3p^2+p-3=0

Simple and best practice solution for 3p^2+p-3=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3p^2+p-3=0 equation:


Simplifying
3p2 + p + -3 = 0

Reorder the terms:
-3 + p + 3p2 = 0

Solving
-3 + p + 3p2 = 0

Solving for variable 'p'.

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-1 + 0.3333333333p + p2 = 0

Move the constant term to the right:

Add '1' to each side of the equation.
-1 + 0.3333333333p + 1 + p2 = 0 + 1

Reorder the terms:
-1 + 1 + 0.3333333333p + p2 = 0 + 1

Combine like terms: -1 + 1 = 0
0 + 0.3333333333p + p2 = 0 + 1
0.3333333333p + p2 = 0 + 1

Combine like terms: 0 + 1 = 1
0.3333333333p + p2 = 1

The p term is p.  Take half its coefficient (0.5).
Square it (0.25) and add it to both sides.

Add '0.25' to each side of the equation.
0.3333333333p + 0.25 + p2 = 1 + 0.25

Reorder the terms:
0.25 + 0.3333333333p + p2 = 1 + 0.25

Combine like terms: 1 + 0.25 = 1.25
0.25 + 0.3333333333p + p2 = 1.25

Factor a perfect square on the left side:
(p + 0.5)(p + 0.5) = 1.25

Calculate the square root of the right side: 1.118033989

Break this problem into two subproblems by setting 
(p + 0.5) equal to 1.118033989 and -1.118033989.

Subproblem 1

p + 0.5 = 1.118033989 Simplifying p + 0.5 = 1.118033989 Reorder the terms: 0.5 + p = 1.118033989 Solving 0.5 + p = 1.118033989 Solving for variable 'p'. Move all terms containing p to the left, all other terms to the right. Add '-0.5' to each side of the equation. 0.5 + -0.5 + p = 1.118033989 + -0.5 Combine like terms: 0.5 + -0.5 = 0.0 0.0 + p = 1.118033989 + -0.5 p = 1.118033989 + -0.5 Combine like terms: 1.118033989 + -0.5 = 0.618033989 p = 0.618033989 Simplifying p = 0.618033989

Subproblem 2

p + 0.5 = -1.118033989 Simplifying p + 0.5 = -1.118033989 Reorder the terms: 0.5 + p = -1.118033989 Solving 0.5 + p = -1.118033989 Solving for variable 'p'. Move all terms containing p to the left, all other terms to the right. Add '-0.5' to each side of the equation. 0.5 + -0.5 + p = -1.118033989 + -0.5 Combine like terms: 0.5 + -0.5 = 0.0 0.0 + p = -1.118033989 + -0.5 p = -1.118033989 + -0.5 Combine like terms: -1.118033989 + -0.5 = -1.618033989 p = -1.618033989 Simplifying p = -1.618033989

Solution

The solution to the problem is based on the solutions from the subproblems. p = {0.618033989, -1.618033989}

See similar equations:

| 5x+20=10x+0 | | 7y-4z=2 | | (8x^3-6x^2+8x)-(7x^2+3x+3)= | | ln(11x)=11+ln(x) | | 7/3=4/t | | 2(2x+3)=3(x+3) | | 21=1g-3c | | 3h+4b=A | | z/12=4/5 | | 3*7+57=4 | | 2=c/3-2 | | 72.5=-4+8.5h | | p^2=-3+4p | | 6x-4x+3x-8+2x= | | 7x+5-3x+1=2x+1 | | -3(t-1)+7t=9t-1 | | 6x-4+3x-8+2x= | | 502.78+1.6= | | 9+2c=15 | | -4b-8=10-2b | | 7=5+2j | | y(1+x^2)dx+x(1+y^2)dy=0 | | 108=x*(x+3) | | (-7.99)(-2.4)= | | 3g-10=23 | | x^2+11ax+18=0 | | 3/4m-2=2 | | (8x^3/4)(4x^-2/3) | | Sin(.5/2) | | 6x-3=24x+3 | | 6t+5=17 | | 20-(12-8/2)= |

Equations solver categories